More Correlation Inequalities for a Class of Even Ferromagnets

Kei-ichi Kondo ${ }^{1,2}$

Received March 28, 1986; revision received September 3, 1986

Abstract

Rigorous correlation inequalities are presented for a class of even ferromagnets, which includes the spin-1/2 Ising model and scalar φ^{4} models. One of them leads to an extension of the Glimm and Jaffe uniform upper bound on the φ^{4} renormalized coupling constant into the nonsymmetric regime.

KEY WORDS: Correlation inequality; Ising model; scalar field model.

1. INTRODUCTION

In previous work, ${ }^{(1)}$ a series of new correlation inequalities were presented for ferromagnets with the pair interaction Hamiltonian and single spin measure belonging to the Ellis-Monroe-Newman class. ${ }^{(2)}$

In this paper, I report more correlation inequalities for the fourth Ursell function (or cumulant) U_{4} with the presence of the external magnetic field $h \geqslant 0$. Note that the previous work omitted terms containing at least one expectation $\left\langle\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)\right\rangle$ with n odd, because we aimed at obtaining bounds on the four- (and six-) point coupling constants in the single-phase region.

Correlation inequalities are used extensively in the triviality proof ${ }^{(3,4)}$ of $\left(\varphi^{4}\right) d$ theories in $d>4$ dimensions constructed as subsequence limits of the corresponding lattice models. The triviality implies that the renormalized coupling constant defined by $g^{(4)} \equiv-\bar{U}_{4} /\left(\chi^{2} \xi^{d}\right)$ vanishes as the lattice system is moved to the critical point J_{c}, which was only proven in the

[^0]case of approaching the critical point J_{c} from the high-temperature phase $J<J_{c}, h=0$. The absolute bound ${ }^{(4,5)}$ on $g^{(4)}$ is also known only in the single-phase region.

The inequality (2.2) given in the next section is sufficient to prove the absolute upper bound on $g^{(4)}$, i.e., for all $J \geqslant 0$ and all $h \geqslant 0$,

$$
\begin{equation*}
g^{(4)} \equiv-\bar{U}_{4} /\left(\chi^{2} \xi^{d}\right) \leqslant \operatorname{const}(d) \tag{1.1}
\end{equation*}
$$

where the constant is independent of J, h, and all parameters used to specify the single spin measure $v(d \varphi)$ (if it belongs to the Ellis-Monroe-Newman class). It should be remarked that, because of the possible violation of the Lebowitz inequality $U_{4} \leqslant 0$ [see (2.1)], we have no simple lower bound such that $g^{(4)} \geqslant 0$, which will be satisfied only at the critical point J_{c}.

However, the absolute upper bound on $g^{(4)}$ in the whole (J, h) plane may support the idea of critical point dominance, ${ }^{(6,7)}$ following Glimm and Jaffe. ${ }^{(6)}$

We also obtained correlation inequalities for U_{6}. But their form is so complicated that they are not reported in this paper.

Explicit forms of the cumulants are given as follows:

$$
\begin{align*}
U_{2}\left(x_{1}, x_{2}\right) \equiv & G_{2}\left(x_{1}, x_{2}\right)=\left\langle x_{1}, x_{2}\right\rangle-\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle \tag{1.2}\\
U_{3}\left(x_{1}, x_{2}, x_{3}\right)= & \left\langle x_{1}, x_{2}, x_{3}\right\rangle-\sum\left\langle x_{i_{1}}\right\rangle\left\langle x_{i_{2}}, x_{i_{3}}\right\rangle+2\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle\left\langle x_{3}\right\rangle \tag{1.3}\\
U_{4}\left(x_{1}, \ldots, x_{4}\right)= & \left\langle x_{1}, x_{2}, x_{3}, x_{4}\right\rangle-\sum\left\langle x_{i_{1}}, x_{i_{2}}\right\rangle\left\langle x_{i_{3}}, x_{i_{4}}\right\rangle \\
& -\sum\left\langle x_{i_{1}}\right\rangle\left\langle x_{i_{2}}, x_{i_{3}}, x_{i_{4}}\right\rangle+2 \sum\left\langle x_{i_{1}}\right\rangle\left\langle x_{i_{2}}\right\rangle\left\langle x_{i_{3}}, x_{i_{4}}\right\rangle \\
& -6\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle\left\langle x_{3}\right\rangle\left\langle x_{4}\right\rangle \tag{1.4}
\end{align*}
$$

where we used the simplified notation

$$
\begin{equation*}
\left\langle x_{1}, \ldots, x_{n}\right\rangle \equiv\left\langle\varphi\left(x_{1}\right) \cdots \varphi\left(x_{n}\right)\right\rangle \tag{1.5}
\end{equation*}
$$

Note that the absolute bound on the three-point amplitude was already obtained in Ref. 8, which can be shown for our models using the correlation inequalities (3.12a) and (3.12b) in Ref. 1:

$$
\begin{equation*}
0 \geqslant U_{3}(i, j, k) \geqslant-4\langle i\rangle G_{2}(j, k) \tag{1.6}
\end{equation*}
$$

Let $\Phi=\left\{\varphi_{i} \in \mathbb{R} ; i=1, \ldots, N\right\}$ be a finite family of real-valued, random variables, whose joint distribution μ on \mathbb{R}^{N} is given by

$$
d \mu_{J, h}(\Phi)=Z_{J, h}^{-1} \exp \left[-H_{J, h}(\Phi)\right] \prod_{i=1}^{N} d v\left(\varphi_{i}\right)
$$

where $H_{J, h}(\Phi),(J, h)=\left\{J_{i j}, h_{i}\right\}$, is the Hamiltonian defined by

$$
H_{J, h}(\Phi)=-\sum_{1 \leqslant i \leqslant j \leqslant N} J_{i j} \varphi_{i} \varphi_{j}-\sum_{1 \leqslant i \leqslant N} h_{i} \varphi_{i}, \quad J_{i j} \geqslant 0, \quad h_{i} \geqslant 0
$$

and $Z_{J, h}$ is the partition function, chosen so that $\int d \mu_{J, h}(\Phi)=1$.
Consider the fourfold duplicate system whose random variables $\Phi^{(a)}(a=1, \ldots, 4)$ are independently, identically distributed by μ. If the single spin measure v belongs to the Ellis-Monroe-Newman class, then, for arbitrary sets of four multi-indices $P=(P(1), \ldots, P(4))$,

$$
\begin{equation*}
\int d \mu\left(\Phi^{(1)}\right) \cdots d \mu\left(\Phi^{(4)}\right) \prod_{a=1}^{4}\left[(B \Phi)^{(a)}\right]^{P(a)} \geqslant 0 \tag{1.7}
\end{equation*}
$$

where $(B \Phi)^{(a)}=\sum_{b=1}^{4} B_{a b} \Phi^{(b)}$ and B is the orthogonal matrix

$$
B=\frac{1}{2}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
-1 & 1 & 1 & -1
\end{array}\right]
$$

Note that each $p_{k}(a)(a=1, \ldots, 4 ; k=1, \ldots, N)$ takes nonnegative integral values. For details see Ref. 1.

2. NEW CORRELATION INEQUALITIES

Now I give new correlation inequalities, together with the corresponding sets of multi-indices $P=(P(1), \ldots, P(4))$. In the following, $P(a)=n$ implies that $p_{k_{1}}(a)=1, \quad p_{k_{2}}(a)=1, \ldots, p_{k_{n}}(a)=1$ for arbitrarily chosen sites k_{1}, \ldots, k_{n}.

1. $P=(1,1,1,1)$:

$$
\begin{equation*}
U_{4}(i, j, k, l) \leqslant-4\langle i\rangle U_{3}(j, k, l) \tag{2.1}
\end{equation*}
$$

2. $P=(0,2,2,0),(0,2,0,2),(0,0,2,2)$:

$$
\begin{equation*}
U_{4}(i, j, k, l) \geqslant-4 G_{2}(i, j) G_{2}(k, l) \tag{2.2}
\end{equation*}
$$

3. $P=(2,2,0,0),,(2,0,2,0),(2,0,0,2)$:

$$
\begin{align*}
U_{4}(i, j, k, l) \geqslant & -4\langle i\rangle U_{3}(j, k, l)-4\langle j\rangle U_{3}(i, k, l) \\
& -4 G_{2}(i, j) G_{2}(k, l)-16\langle i\rangle\langle j\rangle G_{2}(k, l) \tag{2.3}
\end{align*}
$$

Remark 1. For $P=(0,4,0,0),(0,0,4,0)$, and $(0,0,0,4)$, we get

$$
\begin{aligned}
U_{4}(i, j, k, l) \geqslant & -4 G_{2}(i, j) G_{2}(k, l)-4 G_{2}(i, k) G_{2}(j, l) \\
& -4 G_{2}(i, l) G_{2}(j, k)
\end{aligned}
$$

But this is weaker than (2.2), in view of Griffiths second inequality ($G_{2} \geqslant 0$).

Remark 2. ${ }^{3}$ The inequality (1.6) [(3.12b) of Ref. 1] with factor 2 instead of 4 can be obtained from the Ginibre inequality ${ }^{(9)}\left\langle t_{i} q_{j} q_{k}\right\rangle \geqslant 0$. So the EMN argument is weaker here. This is the case for the inequality (3.13b) of Ref. 1.

ACKNOWLEDGMENTS

I would like to thank H. Nakatani for his help in computer programming and Alan Sokal for his interest in this work. The author is a Fellow of the Japan Society for the Promotion of Science. This work was supported in part by a Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture (60790026).

REFERENCES

1. K.-I. Kondo, T. Otofuji, and Y. Sugiyama, J. Stat. Phys. $40: 563$ (1985).
2. R. S. Ellis and J. L. Monroe, Commun. Math. Phys. $41: 33$ (1975); R. S. Ellis, J. L. Monroe, and C. M. Newman, Commun. Math. Phys. 46:167 (1976); R. S. Ellis and C. M. Newman, Trans. Am. Math. Soc. 237:83 (1978).
3. J. Fröhlich, Nucl. Phys. B 200(FS4):281 (1982).
4. M. Aizenman, Phys. Rev. Lett. $47: 1$ (1981); M. Aizenman, Commun. Math. Phys. 86:1 (1982).
5. J. Glimm and A. Jaffe, Ann. Inst. Henri Poincaré A 22:97 (1975).
6. J. Glimm and A. Jaffe, Ann. Inst. Henri Poincaré 21:27 (1974).
7. A. S. Wightman, in The Whys of Subnuclear Physics (1977 Erice Lectures), A. Zichichi, ed. (Plenum Press, New York, 1979), pp. 983-1025; A. S. Wightman, in New Developments in Quantum Field Theory and Statistical Mechanics, M. Levy and P. K. Mitter, eds. (Plenum Press, New York, 1977).
8. A. D. Sokal, J. Stat. Phys. 25:25 (1981).
9. G. S. Sylvester, J. Stat. Phys. 15:327 (1976); J. Ginibre, Commun. Math. Phys. 16:310 (1976).
[^1]
[^0]: ${ }^{1}$ Department of Physics, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464, Japan.
 ${ }^{2}$ Present address: Deparṭment of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan.

[^1]: ${ }^{3}$ This remark is due to Alan Sokal.

