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More Correlation Inequalities for a Class 
of Even Ferromagnets 
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Rigorous correlation inequalities are presented for a class of even ferromagnets, 
which includes the spin-l/2 Ising model and scalar (p4 models. One of them 
leads to an extension of the Glimm and Jaffe uniform upper bound on the ~04 
renormalized coupling constant into the nonsymmetric regime. 
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1. I N T R O D U C T I O N  

In previous work,(~ a series of new correlation inequalities were presented 
for ferromagnets with the pair interaction Hamiltonian and single spin 
measure belonging to the Ellis-Monroe-Newman class. 12) 

In this paper, I report more correlation inequalities for the fourth 
Ursell function (or cumulant) U4 with the presence of the external 
magnetic field h ~> 0. Note that the previous work omitted terms containing 
at least one expectation (~o(xl)...(p(x,~)) with n odd, because we aimed at 
obtaining bounds on the four- (and six-) point coupling constants in the 
single-phase region. 

Correlation inequalities are used extensively in the triviality proof (3,4~ 
of (~04) d theories in d >  4 dimensions constructed as subsequence limits of 
the corresponding lattice models. The triviality implies that the renor- 
realized coupling constant defined by gi41_ _CTa/(Z2~d) vanishes as the lat- 
tice system is moved to the critical point Jc, which was only proven in the 
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case of approaching the critical point J~. from the high-temperature phase 
J<Jc, h = 0. The absolute bound 14'5) on g(4) iS also known only in the 
single-phase region. 

The inequality (2.2) given in the next section is sufficient to prove the 
absolute upper bound on g(4), i.e., for all J~>0 and all h>~0, 

gt4) _ _ 04/(Z2~a) ~< const(d) (1.1) 

where the constant is independent of J, h, and all parameters used to 
specify the single spin measure v(dq)) (if it belongs to the 
Ellis-Monroe-Newman class). It should be remarked that, because of the 
possible violation of the Lebowitz inequality U4~<0 [see (2.1)], we have 
no simple lower bound such that g(4) >/0, which will be satisfied only at the 
critical point J,~. 

However, the absolute upper bound on g(41 in the whole (J, h) plane 
may support the idea of critical point dominance, (6'7~ following Glimm and 
Jaffe. t61 

We also obtained correlation inequalities for U6. But their form is so 
complicated that they are not reported in this paper. 

Explicit forms of the cumulants are given as follows: 

U2(XI, X2) = G2(Xl, x2) = {Xl, x2 )  - {x  I ) ~ x 2 )  (1.2) 

U3(Xi, X2, X3)~ <XI, X2, X35 - - Z  <Xil><Xi2, Xi35 "~-2<Xl ><X2><X3> (1.3) 

U4(xl,..., x4)= (x l ,  x2, x3, x45 - Z  (x , , ,  x ,~)(x ,~,  xi45 

- Z ( x i , ) ( x i2 ,  xi3, xi4) + 2 Z  ( x , , ) ( x , 2 ) ( x i  3, x, 4) 

- 6 ( x l )  ( x2 )  <x3 ) ( x4 )  (1.4) 

where we used the simplified notation 

(Xx,..., x,,> - (~o(x l ) . . .~o(x , , ) )  (1.5) 

Note that the absolute bound on the three-point amplitude was already 
obtained in Ref. 8, which can be shown for our models using the 
correlation inequalities (3.12a) and (3.12b) in Ref. 1: 

0 >1- U3(i, j, k) >>- - 4 ( i )  G2(j, k) (1.6) 

Let q~ = {~ote R; i =  1,..., N} be a finite family of real-valued, random 
variables, whose joint distribution # on R N is given by 

N 
Z-x exp[--Hj .h(~)]  1~I dv(~~ d~.,,(~) = ~.~ 

i l 
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where Hj, h(~ ), (J, h ) =  {J#, hi}, is the Hamiltonian defined by 

Hj, e ( O s ) = -  ~ Jo~oiqo/-- ~ h,(pi, Ju>~O, h,>~O 
1 ~< i~< j~< N I ~< i~< N 

and Zj, h is the partition function, chosen so that 5 dl~j.e(cI)) = 1. 
Consider the fourfold duplicate system whose random variables 

~(~) (a = 1 ..... 4) are independently, identically distributed by #. If the single 
spin measure v belongs to the Ell is-Monroe-Newman class, then, for 
arbitrary sets of four multi-indices P = (P(1) ..... P(4)), 

4 
f d]~( (~(1) )""  dJ[~((~)(4)) H [(B~)(')] P(") >~0 (1.7) 

- . 4 , q  b )  where (B~)("I= 324= 1/3,h~ and B is the orthogonal matrix 

{i 1 - 1  1 

1 - 1  

1 1 

Note that each pk(a) (a = 1 ..... 4; 
values. For details see Ref. 1. 

k = 1,..., N) takes nonnegative integral 

2. NEW CORRELATION INEQUALITIES 

Now I give new correlation inequalities, together with the 
corresponding sets of multi-indices P =  (P(1) ..... P(4)). In the following, 
P(a) =n  implies that pkL(a)= 1, p~2(a)= 1 ..... p~o(a) = 1 for arbitrarily 
chosen sites k~ ..... k,,. 

1. P = ( 1 ,  1, 1, 1): 

U4(i, j, k, l) <~ - 4 ( i )  U3(j, k, I) (2.1) 

2. P = ( 0 , 2 , 2 , 0 ) ,  (0 ,2 ,0 ,2) ,  (0 ,0 ,2 ,2) :  

U4(i, j, k, l) >~ -4G2(i  , j) Gz(k, l) (2.2) 

3. P = ( 2 , 2 , 0 , 0 , ) , ( 2 , 0 , 2 , 0 ) ,  (2 ,0 ,0 ,2) :  

U4(i, j, k, l) >~ - 4 ( i )  U3(j, k, l) - 4 ( j )  U3(i, k, l) 

-4G2( i ,  j )G2(k,  l ) -  1 6 ( i ) ( j )  G2(k , l) (2.3) 



38 Kondo 

Remark 1. For P = (0, 4, 0, 0), (0, 0, 4, 0), and (0, 0, 0, 4), we get 

g4( i, j, k, f) >i -4G2(i, j )  G2(k, l) - 4G2( i, k) G2(j, t) 

- 4G2(i, l) Gz(j, k) 

But this is weaker than (2.2), in view of Griffiths second inequality 
(G2 ~>0). 

Remark 2.  3 The inequality (1.6) [(3.12b) of Ref. I] with factor 2 
instead of 4 can be obtained from the Ginibre inequality~91(tiqjqk)>~ O. So 
the EMN argument is weaker here. This is the case for the inequality 
(3.13b) of Ref. 1. 
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