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More Correlation Inequalities for a Class
of Even Ferromagnets

Kei-ichi Kondo !
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Rigorous correlation inequalities are presented for a class of even ferromagnets,
which includes the spin-1/2 Ising model and scalar ¢* models. One of them
leads to an extension of the Glimm and Jaffe uniform upper bound on the ¢*
renormalized coupling constant into the nonsymmetric regime.
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1. INTRODUCTION

In previous work,""’ a series of new correlation inequalities were presented
for ferromagnets with the pair interaction Hamiltonian and single spin
measure belonging to the Ellis-Monroe-Newman class.

In this paper, I report more correlation inequalities for the fourth
Ursell function (or cumulant) U, with the presence of the external
magnetic field 4> 0. Note that the previous work omitted terms containing
at least one expectation {@(x,)---¢(x,)> with n odd, because we aimed at
obtaining bounds on the four- (and six-) point coupling constants in the
single-phase region.

Correlation inequalities are used extensively in the triviality proof*
of (¢?) d theories in d> 4 dimensions constructed as subsequence limits of
the corresponding lattice models. The triviality implies that the renor-
malized coupling constant defined by g’ = —T,/(x25%) vanishes as the lat-
tice system is moved to the critical point J,, which was only proven in the
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case of approaching the critical point J, from the high-temperature phase
J<J,., h=0. The absolute bound'*> on g¥ is also known only in the
single-phase region.

The inequality (2.2) given in the next section is sufficient to prove the
absolute upper bound on g, ie., for all J>0 and all 2> 0,

g = —U,/(x*¢%) < const(d) (1.1)

where the constant is independent of J, A, and all parameters used to
specify the single spin measure v(de) (if it belongs to the
Ellis-Monroe-Newman class). It should be remarked that, because of the
possible violation of the Lebowitz inequality U, <0 [see (2.1)], we have
no simple lower bound such that g > 0, which will be satisfied only at the
critical point J,.

However, the absolute upper bound on g'*) in the whole (J, #) plane
may support the idea of critical point dominance,®” following Glimm and
Jaffe.®

We also obtained correlation inequalities for Ug. But their form is so
complicated that they are not reported in this paper.

Explicit forms of the cumulants are given as follows:

Us(xy, x2) = Ga(xy, x5) = {xy, X0 — {x ) <xy ) (1.2)
Us(xy, X5, x3) = (X, Xo, X3 — 2 <xi1><x127 xi3> +2{x1 > {xp<x3> (1.3)
Ua(X (s Xa) = {X15 Xo, X35 Xa ) — 20 (X4, X5, 0 Xy, Xy,

-2 <Xi1><xi2’ Xy Xi4> +2¥ <xi1><xiz><xi3a xi4>

— 6y p<x x50 <xa) (14)
where we used the simplified notation
<x17"'> X,I>E<(P(X1)"'(,D(X")> (15)

Note that the absolute bound on the three-point amplitude was already
obtained in Ref 8, which can be shown for our models using the
correlation inequalities (3.12a) and (3.12b) in Ref. 1:

02 Us(i, j, k)= —4<1) Gy, k) (1.6)

Let @ = {¢p,eR; i=1,., N} be a finite family of real-valued, random
variables, whose joint distribution x on R” is given by

dpy (@) = ZJ_,hl expl ‘Hj,h(qj)] H dv(e;)

i=1
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where H, ,(P), ( = {J;, h,}, is the Hamiltonian defined by
HJ,h(Q): - Z Jij(Pi‘Pj_ Z hi,, Jij>07 h; 20
I<i<j<N 1<i<N

and Z,, is the partition function, chosen so that jdy (@)= 1

Consider the fourfold duplicate system whose random variables
@' (a=1,.., 4) are independently, identically distributed by u. If the single
spin measure v belongs to the Ellis—Monroe-Newman class, then, for
arbitrary sets of four multi-indices P = (P(1),..., P(4)),

[ (@) du(@®) [1 C(Boy7e (17)

where (B®)“' =34 _, B, @ and B is the orthogonal matrix

1 1 —1 1 —1
2 1 1 -1 -1
—1 1 1 -1

Note that each p,(a) (a=1,...,4; k=1,., N) takes nonnegative integral
values. For details see Ref. 1.

2. NEW CORRELATION INEQUALITIES

Now I give new correlation inequalities, together with the
corresponding sets of multi-indices P = (P(1),..., P(4)). In the following,
P(a)=n implies that p,(a)=1, p,(a)=1,., p,(a)=1 for arbitrarily
chosen sites k..., k,,.

L P=(1,1,1,1)
Ui, j, k, 1)< —4<i> Us(j &, 1) (2.1)
2. P=(0,2,2,0),(0,2,0,2), (0,0,2,2):
Ui, j, k, 1) = —4G,(i, j) Gk, 1) (2.2)
3. P=(2,2,0,0,),(2,0,20), (2,0,0,2):
Uiy ok, 1) = —440 Us(j k, 1) — 445> Us(i, k, 1)
' —4G,(i, ) Gk, [) — 16i>{ > Go(k, 1) (2.3)
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Remark 1. For P=(0,4,0,0), (0,0,4,0), and (0,0,0, 4), we get

Usi, Jo k, 1) 2 —4Go(i, J) Gylk, [) = 4G, (i, k) G, (), 1)
—4G(i, 1) Go(J, k)

But this is weaker than (2.2), in view of Griffiths second inequality
(G,=0).

Remark 2.> The inequality (1.6) [(3.12b) of Ref. 1] with factor 2
instead of 4 can be obtained from the Ginibre inequality®’{z,q;q,> >0. So
the EMN argument is weaker here. This is the case for the inequality
(3.13b) of Ref. 1.
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